
Tutorial for Adding New Commands to yab

jan 64

August 11, 2006

1 Introduction

yab is based on the yabasic interpreter1. On the yabasic website you will
find additional sources how to enhance the interpreter (titled “Guide into
the Guts of Yabasic”). Nevertheless, this document should give an in-depth
introduction too.

You need some basic knowledge about yab, C, C++ and probably the
BeAPI for adding new commands to yab. Knowledge about flex and bison
are not necessary.

2 Designing a Command

A typical yab command normally is either a procedure (function returning
void), a function returning a number (double or int) or a function returning
a string (char*).

A command consists of

• the command words (lexical entities)

• the command rule

• the C wrapping function calling the C++ method

• the C++ method

This will be discussed in detail in the upcoming sections.

1http://www.yabasic.de

1



2.1 The Command Words

The words needed by a command (tokens) are defined in the file
yabasic.flex. Please introduce only new command words, when the ex-
isting are not sufficent to describe your new command. Browse through the
file to find all yabasic and yab commands.

A command word consists of the word itself (in capital letters) and the
token it returns. The token is most often simply the word itself with a t in
front of it. Example:

BUTTON return tBUTTON;

Note: There are exceptions for the token name, e.g. tGET represents the
command word GET$ while tGETNUM represents GET.

New tokens have then to be declared in the file yabasic.bison too by
simply adding the token name in the token list at the beginning of the file.

2.2 The Command Rule

The actual command rule (grammar) has to be added to the file
yabasic.bison. If you scroll through the file you get a good idea how the
grammar should look like.

Basically three sections in this file are interesting: the section for proce-
dures, the section for numerical functions and the section for string functions.
We will investigate the differences of these functions in the next two subsec-
tions.

But first we have a look at the similarities. A command rule is written
with a leading pipe | followed by the tokens and the arguments. At the very
end, a C function identifier follows.

Example:

| tBUTTON coordinates to coordinates ’,’ string expression ’,’

string expression ’,’ string expression

{add command(cBUTTON,NULL);}

Here, coordinates is a substitution for expression ’,’ expression

and to is a substitution for the command TO (which is just a ’,’ anyway).
So basically there are two types of arguments: expression is a number

(of type double) and string expression is a string (of type char*). They

2



can be separated by commas ’,’. Brackets (’(’ and ’)’) are possible too,
but I have not used them often.

Thus, in this example the BUTTON command has 7 arguments, 4 num-
bers for the coordinates and 3 strings that will contain the own ID, the button
text and the view ID.

2.3 Procedures

As all procedures, the mentioned example does not return a value (it is a void
function in C). It gets an internal identifier named cBUTTON. This identifier
has to be declared in the file yabasic.h. Just check the list of other similar
identifiers for the location in the file.

Furthermore, in yabasic.h the name of the C function that is added
to the file graphic.c has to be declared. Procedures always get a struct

command *, YabInterface * as argument. The command struct contains
information about the yab arguments, line number etc. Thus, in graphic.c

the C function will simply forward these information to the main C++ class
(YabInterface).

Just before adding the function in graphic.c it has to be added in main.c

too. There, add it to the switch that calls the functions according to their
identifier. E.g.:

case cBUTTON:

createbutton(current, yab); DONE;

A typical void function in graphic.c looks like the following example:

void createbutton(struct command *cmd, YabInterface* yab)

{

double x1,y1,x2,y2;

char *id, *title, *view;

view = pop(stSTRING)->pointer;

title = pop(stSTRING)->pointer;

id = pop(stSTRING)->pointer;

y2=pop(stNUMBER)->value;

x2=pop(stNUMBER)->value;

y1=pop(stNUMBER)->value;

3



x1=pop(stNUMBER)->value;

yi_SetCurrentLineNumber(cmd->line, (const char*)cmd->lib->s, yab);

yi_CreateButton(x1,y1,x2,y2, id, title, view, yab);

}

In our example, first the 7 yab arguments are retrieved from the command
struct. Note: the arguments are stored on a stack, so you have to retrieve
them in inverse order! Here, e.g. y1 is retrieved before x1. Also, strings and
numbers have different pop calls.

Numbers can be either double or int but for coordinates, always double
should be used.

The current line number is passed on to the YabInterface class by calling
yi SetCurrentLineNumber. This line is the same for all void functions.

Finally, the arguments are passed on to the YabInterface class by calling
yi CreateButton.

2.4 Functions

Functions that either return a number or a string are implemented differently.
First they get a different identifier starting with an f e.g. fLISTBOXGETNUM.
This identifier has to be declared in yabasic.h in the enum functions.
Note: the functions are sorted by the number of their arguments!

Additionaly, the name of the C function that is added to the file
graphic.c has to be declared in yabasic.h too. Differently to procedures,
these functions get their argument set immediatly, e.g.:

int listboxgetnum(const char*, YabInterface *yab, int line,

const char* libname);

listboxgetnum returns an int while taking a string as first argu-
ment. The further arguments YabInterface *yab, int line, const

char* libname have to be added to provide the YabInterface class fur-
ther information.

Other than procedures, the stack retrieval of arguments and the function
call are all done in the file function.c. There, the yab arguments are re-
trieved from the stack and forwarded to the wrapper function in graphic.c.
Example:

4



case fLISTBOXGETNUM:

str=a1->pointer;

value = listboxgetnum(str, yab, linenum, current->lib->s);

result = stNUMBER;

break;

The string argument is retrieved by a1->pointer. Numerical arguments
are addressed by e.g. a3->value (not in this example). The arguments are
numbered from a1 to a6. More arguments are currently not supported.

Here, the result is stored as a number. For strings, the result should be
stored in pointer and result = stSTRING; has to be set. Check the other
commands in this file for further examples.

Finally, the wrapper function has to be implemented in graphic.c. For
our example, this looks like the following code:

int listboxgetnum(const char* id, YabInterface *yab, int line,

const char* libname)

{

yi_SetCurrentLineNumber(line, libname, yab);

return yi_ListboxGetNum(id, yab);

}

The current line number is passed on to the YabInterface class by calling
yi SetCurrentLineNumber. This line is the same for all functions. The
returned number is then simply passed on by yi ListboxGetNum.

Note: strings have to be copied with my strdup, e.g. return

my strdup((char*)yi CheckMessages(yab)); It is up to you that strings
still exist in memory when copied!

3 The C++ Class YabInterface

3.1 Adding a Method

After the above described overhead, we are ready to actually write the new
method. The method has a C++ name and a wrapper function with an
external name starting with yi . Both have to be defined in YabInterface.h

and implemented in YabInterface.cpp.
The wrapper function takes the pointer to the YabInterface object and

calls the main method:

5



void yi_CreateButton(double x1,double y1,double x2,double y2,

const char* id, const char* title,

const char* view, YabInterface* yab)

{

yab->CreateButton(BRect(x1,y1,x2,y2), id, _L(title), view);

}

Note the L() macro that is used on all text that should be translated
automagically by the ZETA local kit. It will kick in when the LOCALIZE

command was used. So please use this macro whenever possible, to allow
simple localization.

The method itself is part of the YabInterface class which is derived
from BApplication. You can always expect BApplication up and running
(with the interpreter in an own thread). Thus, all BApplication methods
are directly accessable from your method.

void YabInterface::CreateButton(BRect frame, const char* id,

const char* title, const char* view)

{

// code here

}

3.2 Accessing yab Data Structures

yab stores various information in list objects. The probably most wanted
list is the list of available views. These are stored in the YabList object
viewList. To initialize a new widget, it is often sufficient to find the parent
view. This is done by calling YabList::GetView(const char*):

YabView *myView = cast_as((BView*)viewList->GetView(view), YabView);

if(myView)

{

YabWindow *w = cast_as(myView->Window(), YabWindow);

if(w)

{

w->Lock();

// initialize widget here

w->Unlock();

6



}

else

ErrorGen("Unable to lock window");

}

else

Error(view, "VIEW");

New widgets should allow some useful layouting. Please refer to the
commands for BUTTON and LISTBOX to understand how different kinds
of layouting are used in yab.

If you want to find a specific widget on an unknown view, you have to
cycle through the views to look for the view containing your widget. Such
a loop looks like this (under the condition that MyWidget is derived from
BView):

YabView *myView = NULL;

MyWidget *myWidget = NULL;

for(int i=0; i<viewList->CountItems(); i++)

{

myView = cast_as((BView*)viewList->ItemAt(i), YabView);

if(myView)

{

YabWindow *w = cast_as(myView->Window(), YabWindow);

if(w)

{

w->Lock();

myWidget = cast_as(myView->FindView(id), MyWidget);

if(myWidget)

{

// do something with myWidget

w->Unlock();

return;

}

w->Unlock();

}

}

}

Error(id, "MyWidget");

7



Note: the return is set after something has been done with the widget
and after unlocking the window again. This allows the lazy error checking
at the end of the loop.

3.3 Some Short Remarks

At the end some short remarks about...

• BUILD macros: Some commands have BUILD macros that allow to dis-
able whole parts of yab on compiling. This is used for the build factory
to produce smaller code size. Unused libraries and code parts are simply
left out when they are not needed. Make use of these macros whenever
you enhance commands that have these macros.

• Drawing: Drawing commands are a bit tricky. They offer drawing on
a view, on a bitmap and a canvas. Especially the view drawing has
a own storage system. Investigate the other drawing commands to
understand how they work.

• Own classes: Adding own classes is nice, but remember to add this
new information in the makefiles (R5 and ZETA!) too.

4 Summary

To give you a checklist of what has to be done in short, have a look at the
summary:

• add new command word (token) in yabasic.flex if necessary

• add command rule (grammar) in yabasic.bison

• add command identifer and C method name in yabasic.h

• add command call in either function.c or main.c

• add wrapper function in graphic.c

• add C to C++ wrapper functions in YabInterface.h and
YabInterface.cpp

• add C++ method in YabInterface.h and YabInterface.cpp

8


